The concept of selective leptin resistance: evidence from agouti yellow obese mice.

نویسندگان

  • Marcelo L G Correia
  • William G Haynes
  • Kamal Rahmouni
  • Donald A Morgan
  • William I Sivitz
  • Allyn L Mark
چکیده

Leptin, a hormone secreted by adipose tissue, acts to inhibit appetite and promote metabolism, thereby reducing body weight. Leptin also increases sympathetic activity and arterial pressure. Several murine models of obesity, including agouti obese mice, exhibit resistance to the anorexic and weight-reducing effects of leptin. Hypertension in agouti mice has been attributed to hyperleptinemia. These observations pose a seeming paradox. If these mice are leptin-resistant, then how can leptin contribute to hypertension? We tested the novel hypothesis that these mice have selective leptin resistance, with preservation of the sympathoexcitatory action despite resistance to the weight-reducing actions. Leptin-induced decreases in food intake and body weight were less in agouti obese mice than in lean littermates. In contrast, leptin-induced increases in sympathetic nerve activity did not differ in obese and lean mice. These findings support the concept of selective leptin resistance, with resistance to the metabolic actions of leptin but preservation of the sympathoexcitatory actions. This finding may have potential implications for human obesity, which is associated with elevated plasma leptin and is thought to be a leptin-resistant state. If leptin resistance is selective in obese humans, then leptin could contribute to sympathetic overactivity and its adverse consequences in human obesity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective resistance to central neural administration of leptin in agouti obese mice.

We recently demonstrated that in a rodent model of obesity (agouti yellow mice), there is a selective leptin resistance with preservation of the sympathetic actions despite loss of appetite and weight-reducing actions of systemic leptin. Here, we examined whether selective leptin resistance exists in agouti mice during central neural administration of leptin. In agouti obese mice and lean contr...

متن کامل

Regulation of leptin by agouti.

Dominant mutations at the mouse Agouti locus lead to ectopic expression of the Agouti gene and exhibit diabetes, obesity, and yellow coat color. Obese yellow mice are hyperinsulinemic and hyperleptinemic, and we hypothesized that Agouti directly induces leptin secretion. Accordingly, we used transgenic mice expressing agouti in adipocytes (under the control of aP2 promoter, aP212) to examine ch...

متن کامل

SiRNA-mediated silencing of the diencephalic thyrotropin-releasing hormone precursor gene decreases the arterial blood pressure in the obese agouti mice.

Obesity is associated with increased cardiovascular morbidity and mortality, in part through development of hypertension. Leptin promotes weight loss by reducing food intake and increasing energy expenditure through sympathetic stimulation. It also counteracts the starvation-induced suppression of thyroid hormone by up-regulating the expression of TRH. On the other hand, it is known that the ex...

متن کامل

Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur.

Mice that carry the lethal yellow (Ay) or viable yellow (Avy) mutation, two dominant mutations of the agouti (a) gene in mouse chromosome 2, exhibit a phenotype that includes yellow fur, marked obesity, a form of type II diabetes associated with insulin resistance, and an increased susceptibility to tumor development. Molecular analyses of these and several other dominant "obese yellow" a-locus...

متن کامل

Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance.

Leptin regulates body weight in mice by decreasing appetite and increasing sympathetic nerve activity (SNA), which increases energy expenditure in interscapular brown adipose tissue (iBAT). Diet-induced obese mice (DIO) are resistant to the anorectic actions of leptin. We evaluated whether leptin still stimulated sympathetic outflow in DIO mice. We measured iBAT temperature as a marker of SNA. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 51 2  شماره 

صفحات  -

تاریخ انتشار 2002